• 0 Posts
  • 22 Comments
Joined 1 year ago
cake
Cake day: June 25th, 2023

help-circle



    1. Sure, there are libraries and tools for some parts. But the question is: do they actually add value, or do they subtract it due to the cost it imposes to integrate them? There are only a couple parts where it is likely worth it (but even there, you’ll need to understand what they’re doing): the UDP reliability layer, the encryption layer, and possibly the event loop (but I say that mostly because io_uring is weird; previously I wouldn’t include this. On the client side it isn’t needed, but that depends on how much code you share between server and client). Packet framing and serialization are really easy to do yourself and most existing tools (which usually do generate code anyway) have weird limitations or overhead.
    2. “should do more” is a general rule to prevent easy DoS attacks. It can mean packet sizes, it can mean computation, it can mean hard-coded timer delays, it can mean all sorts of things. Don’t make it easy for a malicious client to waste shared resources. This is mostly relevant for early in the connection … but keep in mind that it’s possible for a malicious client to spy on a legitimate client and try to take over - that is, connections aren’t actually a real thing (this applies even for TCP).

  • You’ve clearly thought about the problem, so the solutions should be relatively obvious. Some less obvious ones:

    • It is impossible to make TCP reliable no matter how hard you try, because anybody can inject an RST flag at any time and cut off your connections (this isn’t theoretical, it’s actually quite common for long-lived gaming connections). That leaves UDP, for which there are several reliability layers, but most of them are not battle-tested - remember, TCP is most notable for congestion-control! HTTP3 is probably the only viable choice at scale, but beware that many implementations are very bad (e.g. not even supporting recvmmsg/sendmmsg which are critical for performance unlike with TCP; note the extra m)
    • If you don’t encrypt all your packets, you will have random middleware mess with their data. Think at least a little about key rotation.
    • To avoid application-centric DoS, make sure the client always does “more” than the server; this extends to e.g. packet sizes.
    • Prefer to ultimately define things in data, not code (e.g. network packet layouts). Don’t be afraid to write several bespoke code-generators; many real-world serialization formats in particular have unacceptable tradeoffs. Make sure the core code doesn’t care about the details (e.g. make every packet physically variable-length even if logically it is always fixed-length; you can also normalize zero-padding at this level for future compatibility. I advise against delta-compression at this level because that’s extra processing you don’t need).
    • Make sure the client only has to connect to a single server. If you have multiple servers internally, have a thin bouncer/proxy that forwards packets appropriately. This also has benefits for the inevitable DDoS attacks.
    • Latency is a bitch and has far-ranging effects, though this is highly dependent on not just genre but also UI. For example “hold down a key to move continuously through the world” is problematic whereas “click to move to a location” is not.
    • Beware quadratic complexity, e.g. if every player must send a location update to every player.
    • Think not only about the database, but how to back up the database and how to roll back in case of catastrophe or exploit. An append-only flat file has a lot going for it; only periodic repacking is needed and you can keep the old version for a while with a guarantee that it’ll replay to identical state to the initial version of the new file. Of course, the best state is no state at all. You will need to consider the notion of “transaction” at many levels, including scripting (you must give me 20 bear asses for me to give), trading between players, etc.
    • You will have abuse in chat. You will also have cybersex. It’s possible to deal with this in a privacy-preserving way by merely signing chat, not logging it, so the player can present evidence only if they wish, but there are a lot of concerns about e.g. replays, selective message subsets, etc.
    • There will be bots, especially if the official client isn’t good enough.
    • It’s $CURRENTYEAR; write code for IPv6 exclusively. There are sockopts for transparently handling legacy IPv4 clients.
    • Client IP address is private information. It is also the only way to deal with certain kinds of abuse. Sometimes, you just have to block all of Poland.
    • Note that routing in parts of the world is really bad. Sometimes setting up your own dedicated connection chain between datacenters can improve performance by orders of magnitude, rather than letting clients use whatever their ISP says. If nesting proxies be sure to correctly validate IPs.
    • Life is simpler if internal stuff listens on a separate port than external stuff, but still verify your peer. IP whitelisting is useless except for localhost (which, mind, is all of 127.0.0.0/8 for IPv4 - about the only time IPv4 is actually useful rather than a mere mirage).


  • Speed is far from the only thing that matters in terminal emulators though. Correctness is critical.

    The only terminals in which I have any confidence of correctness are xterm and pangoterm. And I suppose technically the BEL-for-ST extension is incorrect even there, but we have to live with that and a workaround is available.

    A lot of terminal emulators end up hard-coding a handful of common sequences, and fail to correctly ignore sequences they don’t implement. And worse, many go on to implement sequences that cannot be correctly handled.

    One simple example that usually fails: \e!!F. More nasty, however, are the ones that ignore intermediaries and execute some unrelated command instead.

    I can’t be bothered to pick apart specific terminals anymore. Most don’t even know what an IR is.










  • Some languages don’t even support linking at all. Interpreted languages often dispatch everything by name without any relocations, which is obviously horrible. And some compiled languages only support translating the whole program (or at least, whole binary - looking at you, Rust!) at once. Do note that “static linking” has shades of meaning: it applies to “link multiple objects into a binary”, but often that it excluded from the discussion in favor of just “use a .a instead of a .so”.

    Dynamic linking supports much faster development cycle than static linking (which is faster than whole-binary-at-once), at the cost of slightly slower runtime (but the location of that slowness can be controlled, if you actually care, and can easily be kept out of hot paths). It is of particularly high value for security updates, but we all known most developers don’t care about security so I’m talking about annoyance instead. Some realistic numbers here: dynamic linking might be “rebuild in 0.3 seconds” vs static linking “rebuild in 3 seconds” vs no linking “rebuild in 30 seconds”.

    Dynamic linking is generally more reliable against long-term system changes. For example, it is impossible to run old statically-linked versions of bash 3.2 anymore on a modern distro (something about an incompatible locale format?), whereas the dynamically linked versions work just fine (assuming the libraries are installed, which is a reasonable assumption). Keep in mind that “just run everything in a container” isn’t a solution because somebody has to maintain the distro inside the container.

    Unfortunately, a lot of programmers lack basic competence and therefore have trouble setting up dynamic linking. If you really need frobbing, there’s nothing wrong with RPATH if you’re not setuid or similar (and even if you are, absolute root-owned paths are safe - a reasonable restriction since setuid will require more than just extracting a tarball anyway).

    Even if you do use static linking, you should NEVER statically link to libc, and probably not to libstdc++ either. There are just too many things that can go wrong when you given up on the notion of “single source of truth”. If you actually read the man pages for the tools you’re using this is very easy to do, but a lack of such basic abilities is common among proponents of static linking.

    Again, keep in mind that “just run everything in a container” isn’t a solution because somebody has to maintain the distro inside the container.

    The big question these days should not be “static or dynamic linking” but “dynamic linking with or without semantic interposition?” Apple’s broken “two level namespaces” is closely related but also prevents symbol migration, and is really aimed at people who forgot to use -fvisibility=hidden.



  • The thing is - I have probably seen hundreds of projects that use tabs for indentation … and I’ve never seen a single one without tab errors. And that ignoring e.g. the fact that tabs break diffs or who knows how many other things.

    Using spaces doesn’t automatically mean a lack of errors but it’s clearly easy enough that it’s commonly achieved. The most common argument against spaces seems to boil down to “my editor inserts hard tabs and I don’t know how to configure it”.